Design of Binary Distillation Column Using Aspen Plus
The Stanford Libraries will be operating on a reduced schedule during the Stanford Winter Closure period (December 18, 2021 - January 2, 2022). More information about hours
Distillation design and control using Aspen simulation
- Responsibility
- William L Luyben.
- Edition
- 2nd ed.
- Imprint
- Hoboken, N.J. : Wiley, ©2013.
- Copyright notice
- ©2013
- Physical description
- 1 online resource (xix, 498 pages) : illustrations
Online
Available online
- Knovel
-
(Full view)
Report a connection problem
More options
- Find it at other libraries via WorldCat
-
(Limited preview)
Description
Creators/Contributors
- Author/Creator
- Luyben, William L.
Contents/Summary
- Bibliography
- Includes bibliographical references and index.
- Contents
-
- 1. Fundamentals of Vapor
- Liquid
- Equilibrium (VLE)
- 1.1. Vapor Pressure
- 1.2. Binary VLE Phase Diagrams
- 1.3. Physical Property Methods
- 1.4. Relative Volatility
- 1.5. Bubble Point Calculations
- 1.6. Ternary Diagrams
- 1.7. VLE Nonideality
- 1.8. Residue Curves for Ternary Systems
- 1.9. Distillation Boundaries
- 1.10. Conclusions
- Reference
- 2. Analysis of Distillation Columns
- 2.1. Design Degrees of Freedom
- 2.2. Binary McCabe
- Thiele Method
- 2.2.1. Operating Lines
- 2.2.2.q-Line
- 2.2.3. Stepping Off Trays
- 2.2.4. Effect of Parameters
- 2.2.5. Limiting Conditions
- 2.3. Approximate Multicomponent Methods
- 2.3.1. Fenske Equation for Minimum Number of Trays
- 2.3.2. Underwood Equations for Minimum Reflux Ratio
- 2.4. Conclusions
- 3. Setting Up a Steady-State Simulation
- 3.1. Configuring a New Simulation
- 3.2. Specifying Chemical Components and Physical Properties
- 3.3. Specifying Stream Properties.
- 3.4. Specifying Parameters of Equipment
- 3.4.1. Column C1
- 3.4.2. Valves and Pumps
- 3.5. Running the Simulation
- 3.6. Using Design Spec/Vary Function
- 3.7. Finding the Optimum Feed Tray and Minimum Conditions
- 3.7.1. Optimum Feed Tray
- 3.7.2. Minimum Reflux Ratio
- 3.7.3. Minimum Number of Trays
- 3.8. Column Sizing
- 3.8.1. Length
- 3.8.2. Diameter
- 3.9. Conceptual Design
- 3.10. Conclusions
- 4. Distillation Economic Optimization
- 4.1. Heuristic Optimization
- 4.1.1. Set Total Trays to Twice Minimum Number of Trays
- 4.1.2. Set Reflux Ratio to 1.2 Times Minimum Reflux Ratio
- 4.2. Economic Basis
- 4.3. Results
- 4.4. Operating Optimization
- 4.5. Optimum Pressure for Vacuum Columns
- 4.6. Conclusions
- 5. More Complex Distillation Systems
- 5.1. Extractive Distillation
- 5.1.1. Design
- 5.1.2. Simulation Issues
- 5.2. Ethanol Dehydration
- 5.2.1. VLLE Behavior
- 5.2.2. Process Flowsheet Simulation
- 5.2.3. Converging the Flowsheet.
- 5.3. Pressure-Swing Azeotropic Distillation
- 5.4. Heat-Integrated Columns
- 5.4.1. Flowsheet
- 5.4.2. Converging for Neat Operation
- 5.5. Conclusions
- 6. Steady-State Calculations for Control Structure Selection
- 6.1. Control Structure Alternatives
- 6.1.1. Dual-Composition Control
- 6.1.2. Single-End Control
- 6.2. Feed Composition Sensitivity Analysis (ZSA)
- 6.3. Temperature Control Tray Selection
- 6.3.1. Summary of Methods
- 6.3.2. Binary Propane/Isobutane System
- 6.3.3. Ternary BTX System
- 6.3.4. Ternary Azeotropic System
- 6.4. Conclusions
- Reference
- 7. Converting from Steady-State to Dynamic Simulation
- 7.1. Equipment Sizing
- 7.2. Exporting to Aspen Dynamics
- 7.3. Opening the Dynamic Simulation in Aspen Dynamics
- 7.4. Installing Basic Controllers
- 7.4.1. Reflux
- 7.4.2. Issues
- 7.5. Installing Temperature and Composition Controllers
- 7.5.1. Tray Temperature Control
- 7.5.2.Composition Control.
- 7.5.3.Composition/Temperature Cascade Control
- 7.6. Performance Evaluation
- 7.6.1. Installing a Plot
- 7.6.2. Importing Dynamic Results into Matlab
- 7.6.3. Reboiler Heat Input to Feed Ratio
- 7.6.4.Comparison of Temperature Control with Cascade CC/TC
- 7.7. Conclusions
- 8. Control of More Complex Columns
- 8.1. Extractive Distillation Process
- 8.1.1. Design
- 8.1.2. Control Structure
- 8.1.3. Dynamic Performance
- 8.2. Columns with Partial Condensers
- 8.2.1. Total Vapor Distillate
- 8.2.2. Both Vapor and Liquid Distillate Streams
- 8.3. Control of Heat-Integrated Distillation Columns
- 8.3.1. Process Studied
- 8.3.2. Heat Integration Relationships
- 8.3.3. Control Structure
- 8.3.4. Dynamic Performance
- 8.4. Control of Azeotropic Columns/Decanter System
- 8.4.1. Converting to Dynamics and Closing Recycle Loop
- 8.4.2. Installing the Control Structure
- 8.4.3. Performance
- 8.4.4. Numerical Integration Issues
- 8.5. Unusual Control Structure.
- 8.5.1. Process Studied
- 8.5.2. Economic Optimum Steady-State Design
- 8.5.3. Control Structure Selection
- 8.5.4. Dynamic Simulation Results
- 8.5.5. Alternative Control Structures
- 8.5.6. Conclusions
- 8.6. Conclusions
- References
- 9. Reactive Distillation
- 9.1. Introduction
- 9.2. Types of Reactive Distillation Systems
- 9.2.1. Single-Feed Reactions
- 9.2.2. Irreversible Reaction with Heavy Product
- 9.2.3. Neat Operation Versus Use of Excess Reactant
- 9.3. TAME Process Basics
- 9.3.1. Prereactor
- 9.3.2. Reactive Column C1
- 9.4. TAME Reaction Kinetics and VLE
- 9.5. Plantwide Control Structure
- 9.6. Conclusions
- References
- 10. Control of Sidestream Columns
- 10.1. Liquid Sidestream Column
- 10.1.1. Steady-State Design
- 10.1.2. Dynamic Control
- 10.2. Vapor Sidestream Column
- 10.2.1. Steady-State Design
- 10.2.2. Dynamic Control
- 10.3. Liquid Sidestream Column with Stripper
- 10.3.1. Steady-State Design
- 10.3.2. Dynamic Control.
- 10.4. Vapor Sidestream Column with Rectifier
- 10.4.1. Steady-State Design
- 10.4.2. Dynamic Control
- 10.5. Sidestream Purge Column
- 10.5.1. Steady-State Design
- 10.5.2. Dynamic Control
- 10.6. Conclusions
- 11. Control of Petroleum Fractionators
- 11.1. Petroleum Fractions
- 11.2. Characterization Crude Oil
- 11.3. Steady-State Design of Preflash Column
- 11.4. Control of Preflash Column
- 11.5. Steady-State Design of Pipestill
- 11.5.1. Overview of Steady-State Design
- 11.5.2. Configuring the Pipestill in Aspen Plus
- 11.5.3. Effects of Design Parameters
- 11.6. Control of Pipestill
- 11.7. Conclusions
- References
- 12. Divided-Wall (Petlyuk) Columns
- 12.1. Introduction
- 12.2. Steady-State Design
- 12.2.1. MultiFrac Model
- 12.2.2. RadFrac Model
- 12.3. Control of the Divided-Wall Column
- 12.3.1. Control Structure
- 12.3.2. Implementation in Aspen Dynamics
- 12.3.3. Dynamic Results
- 12.4. Control of the Conventional Column Process.
- 12.4.1. Control Structure
- 12.4.2. Dynamic Results and Comparisons
- 12.5. Conclusions and Discussion
- References
- 13. Dynamic Safety Analysis
- 13.1. Introduction
- 13.2. Safety Scenarios
- 13.3. Process Studied
- 13.4. Basic RadFrac Models
- 13.4.1. Constant Duty Model
- 13.4.2. Constant Temperature Model
- 13.4.3. LMTD Model
- 13.4.4. Condensing or Evaporating Medium Models
- 13.4.5. Dynamic Model for Reboiler
- 13.5. RadFrac Model with Explicit Heat-Exchanger Dynamics
- 13.5.1. Column
- 13.5.2. Condenser
- 13.5.3. Reflux Drum
- 13.5.4. Liquid Split
- 13.5.5. Reboiler
- 13.6. Dynamic Simulations
- 13.6.1. Base Case Control Structure
- 13.6.2. Rigorous Case Control Structure
- 13.7.Comparison of Dynamic Responses
- 13.7.1. Condenser Cooling Failure
- 13.7.2. Heat-Input Surge
- 13.8. Other Issues
- 13.9. Conclusions
- Reference
- 14. Carbon Dioxide Capture
- 14.1. Carbon Dioxide Removal in Low-Pressure Air Combustion Power Plants.
- 14.1.1. Process Design
- 14.1.2. Simulation Issues
- 14.1.3. Plantwide Control Structure
- 14.1.4. Dynamic Performance
- 14.2. Carbon Dioxide Removal in High-Pressure IGCC Power Plants
- 14.2.1. Design
- 14.2.2. Plantwide Control Structure
- 14.2.3. Dynamic Performance
- 14.3. Conclusions
- References
- 15. Distillation Turndown
- 15.1. Introduction
- 15.2. Control Problem
- 15.2.1. Two-Temperature Control
- 15.2.2. Valve-Position Control
- 15.2.3. Recycle Control
- 15.3. Process Studied
- 15.4. Dynamic Performance for Ramp Disturbances
- 15.4.1. Two-Temperature Control
- 15.4.2. VPC Control
- 15.4.3. Recycle Control
- 15.4.4.Comparison
- 15.5. Dynamic Performance for Step Disturbances
- 15.5.1. Two-Temperature Control
- 15.5.2. VPC Control
- 15.5.3. Recycle Control
- 15.6. Other Control Structures
- 15.6.1. No Temperature Control
- 15.6.2. Dual Temperature Control
- 15.7. Conclusions
- References.
- 16. Pressure-Compensated Temperature Control in Distillation Columns
- 16.1. Introduction
- 16.2. Numerical Example Studied
- 16.3. Conventional Control Structure Selection
- 16.4. Temperature/Pressure/Composition Relationships
- 16.5. Implementation in Aspen Dynamics
- 16.6.Comparison of Dynamic Results
- 16.6.1. Feed Flow Rate Disturbances
- 16.6.2. Pressure Disturbances
- 16.7. Conclusions
- References
- 17. Ethanol Dehydration
- 17.1. Introduction
- 17.2. Optimization of the Beer Still (Preconcentrator)
- 17.3. Optimization of the Azeotropic and Recovery Columns
- 17.3.1. Optimum Feed Locations
- 17.3.2. Optimum Number of Stages
- 17.4. Optimization of the Entire Process
- 17.5. Cyclohexane Entrainer
- 17.6. Flowsheet Recycle Convergence
- 17.7. Conclusions
- References
- 18. External Reset Feedback to Prevent Reset Windup
- 18.1. Introduction
- 18.2. External Reset Feedback Circuit Implementation
- 18.2.1. Generate the Error Signal.
- 18.2.2. Multiply by Controller Gain
- 18.2.3. Add the Output of Lag
- 18.2.4. Select Lower Signal
- 18.2.5. Setting up the Lag Block
- 18.3. Flash Tank Example
- 18.3.1. Process and Normal Control Structure
- 18.3.2. Override Control Structure Without External Reset Feedback
- 18.3.3. Override Control Structure with External Reset Feedback
- 18.4. Distillation Column Example
- 18.4.1. Normal Control Structure
- 18.4.2. Normal and Override Controllers Without External Reset
- 18.4.3. Normal and Override Controllers with External Reset Feedback
- 18.5. Conclusions
- References.
- Summary
- The new edition of this book greatly updates and expands the previous edition. It boasts new chapters on the divided wall column and carbon dioxide capture from stack gas, revises the design and control of distillation systems, and explains the use of dynamic simulation to study safety issues in the event of operating failures. Using Aspen Plus to develop rigorous simulations of single distillation columns and sequences of columns, the book considers the economics of capital investment and energy costs to create an optimal system for separation methods in the chemical and petroleum industries.
(source: Nielsen Book Data)
Subjects
- Subjects
- Distillation apparatus > Design and construction.
- Chemical process control > Simulation methods.
- Petroleum > Refining.
- SCIENCE > Chemistry > Industrial & Technical.
- TECHNOLOGY & ENGINEERING > Chemical & Biochemical.
Bibliographic information
- Publication date
- 2013
- Note
- "AIChE."
- ISBN
- 9781118510193 (electronic bk.)
- 1118510097 (electronic bk.)
- 9781118510094 (electronic bk.)
- 1118510194 (electronic bk.)
- 9781523110629 (electronic bk.)
- 1523110627 (electronic bk.)
- 9781118411438 (cloth)
- 1118411439 (cloth)
Browse related items
Start at call number:
View full page
Librarian view | Catkey: 12089236
Design of Binary Distillation Column Using Aspen Plus
Source: https://searchworks.stanford.edu/view/12089236
0 Response to "Design of Binary Distillation Column Using Aspen Plus"
Post a Comment